

Water Quality Manual

Copyright © 2006 Instituto Superior Técnico, Technical University of Lisbon

Lisbon, September de 2006

Version 1.0

<u>Index</u>

1 INTEGI	RATION PHILOSOPHY	1
2 TECHN	ICAL DESCRIPTION	4
2.1	COUPLING HYDRODYNAMIC AND BIOGEOCHEMICAL MODELS	4
2.2	CONSTRUCTING THE INTERFACE	5
2.3	INTERFACING DURING THE RUN	6
3 PELAG	IC PROCESSES DESCRIPTION	7
3.1	STATE VARIABLES	9
3.2	Organisms	10
3.2.1	Flagellates and Diatoms	10
3.2.2	2 Micro and Mesozooplankton	17
3.2.3	B Bacteria	22
3.2.4	Grazing Formulations	25
3.3	NITROGEN BIOGEOCHEMICAL CYCLE	27
3.3.1	Ammonia	28
3.3.2	2 Nitrite	29
3.3.3	8 Nitrate	29
3.3.4	Particulate Organic Nitrogen	29
3.3.5	Non Refractory Dissolved Organic Nitrogen	30
3.3.6	6 Refractory Dissolved Organic Nitrogen	30
3.4	PHOSPHORUS BIOGEOCHEMICAL CYCLE	33
3.4.1	Inorganic Phosphorus	34
3.4.2	Particulate Organic Phosphorus	34
3.4.3	8 Non Refractory Dissolved Organic Phosphorus	35
3.4.4	Refractory Dissolved Organic Phosphorus	35
3.5	SILICA CYCLE	38
3.5.1	Dissolved Silica	38
3.5.2	2 Biogenic Silica	38
3.6	OXYGEN CYCLE	40

INDEX OF TABLES

Table 1. Water Quality Module available State Variables.	9
Table 2. Flagellates/Diatoms Gross Growth Rate	
Table 3. Temperature Limitation Factor.	
Table 4. Light Limitation Factor.	13
Table 5. Nutrients Linitation Factor.	
Table 6. Total Respiration Rate	
Table 7. Excretion Rate	
Table 8. Natural Mortality (Non Grazing) Rate.	
Table 9. Flagellates Parameters	
Table 10. Diatoms Parameters	
Table 11. Micro and Mesozooplankton Formulations.	
Table 12. Mesozooplankton Parameters	20
Table 13. Microzooplankton Parameters.	21
Table 14. Bacteria formulations	24
Table 15. Bacteria Parameters	24
Table 16. Grazing Formulation.	26
Table 17.Nitrogen Formulations.	31
Table 18. Nitrogen Parameters	32
Table 19. Phosphorus	36
Table 20. Phosphorus Parameters.	37
Table 21. Silica	39
Table 22. Silica Parameters	39
Table 23. Oxygen	42
Table 24. Oxygen Parameters	42

Index of Figures

Figure 1. MOHID modular structure	1
Figure 2. Information flux between Water Quality Module and the other modules	5
Figure 3. Flagellates and Diatoms Processes	11
Figure 4. Micro and Mesozooplankton Processes	18
Figure 5. Bacteria processes	23
Figure 6. Grazing Options	25
Figure 7. Nitrogen Biogeochemical Cycle	27
Figure 8.Phosphorus Biogeochemical Cycle	33
Figure 9. Silica BioGeoChemical Cycle	38
Figure 10. Oxygen Processes	40

1 Integration Philosophy

MOHID Water Modelling System (http://www.mohid.com), a modelling platform developed at Instituto Superior Técnico (IST), Lisbon, was designed to simulate surface water bodies (MOHID Water), porous media flow and infiltration (MOHID Soil) and watersheds (MOHID Land). It is a modular finite volumes water modelling system written in ANSI FORTRAN 95, using an object oriented programming philosophy (Braunschweig, 2004). This integrated modelling tool is able to simulate physical and biogeochemical processes in the water column and in the sediments, and the coupling between these two domains and atmospheric processes. Figure 1 represents schematically the different modules included in MOHID Water distributed along the different environmental compartments.

Figure 1. MOHID modular structure.

Pelagic Biogeochemical Processes Simulation

The water column entity is embodied by *Module WaterProperties* which uses *Module Hydrodynamic* to compute water fluxes, then used to compute water properties transport. Transport phenomena in the water column for a given property (P), can be described by the 3D advection-diffusion differential equation:

$$\frac{dP}{dt} = \frac{\partial P}{\partial t} + u_j \frac{\partial P}{\partial x_j} = \frac{\partial}{\partial x_j} \left(k_{\Theta} \frac{\partial P}{x_j} \right) + (Sources - Sinks)$$

P is the concentration (ML⁻³), *j* is the index for the correspondent Cartesian axis (x_1 , x_2 , x_3) or (x,y,z), K_{Θ} is the turbulent mass diffusion coefficient (horizontal/vertical). MOHID Water is prepared to simulate properties such temperature, salinity, cohesive sediments, phytoplankton, nutrients, contaminants, etc. These properties can either be (i) dissolved in the water, therefore following the currents; (ii) particulate phase or adsorbed on to particulate matter, thus being subjected to one more transport variable: the settling velocity. This enables particulate properties to deposit in the bottom and thus become a part of the sediment compartment.

Sources and sinks relate to reaction processes taken place inside the assumed control volume, which undertakes local production and destruction terms. The sink and source terms can be computed by MOHID using three different modules, differing mainly in terms of processes description complexity level:

 Module CE-QUAL-W2, using CE-QUAL-W2 ecological formulations, developed at the Corps of Engineers. The model is able to simulate 22 properties, including temperature, nutrients (nitrogen, phosphorus and silica biogeochemical cycles), oxygen and several species of algae

2

(microalgae). The model does not simulate macroalgae, neither the influence of zooplankton in the primary production;

- Module WaterQuality, type of WASP (U.S. Environmental Protection Agency). The model considers 18 properties, including nutrients and organic matter (nitrogen, phosphorus and silica biogeochemical cycles), oxygen and organisms. The model enables the user to choose between the simulation of one group of phytoplankton (for simple applications) or two groups (for more complex applications) – flagellates and diatoms. The same type of option is made for secondary producers: one generic group of zooplankton or two groups – microzooplankton and mesozooplankton. The model is also able to simulate heterotrophic bacteria in the water column.
- Module Life, type of ERSEM. This is a more complex model, able to simulate not only nutrients (nitrogen, phosphorus and silica biogeochemical cycles) but also several species of primary producers, secondary producers and decompositors in the water column. The model computes the variability of N:P:C content in the organism's tissue. More complex and detailed studies can be performed using this model.

2 Technical Description

The paradigm behind the MOHID system was inspired by Prof. DiToro's (member of HydroQual) words: "Phytoplankton does not have GPS", meaning that biochemical processes are 0D and do not depend on the referential and dimensions considered to quantify transport. In the MOHID case, the methodology consists in building a biogeochemical module, where the external forcing conditions are given (ex: light, temperature, salinity) and mass fluxes between state variables (ex: nitrate, phytoplankton and zooplankton) are computed for each control volume. This is an efficient way to guarantee a high level of robustness in the code and to maintain it. This approach is also followed by DHI's MIKE system, which like MOHID, has several transport models.

2.1 Coupling hydrodynamic and biogeochemical models

One way to accomplish the coupling of a biogeochemical pelagic module with different eulerian transport models is to build a biochemical module that computes the reactions for one control volume. Consequently, the biochemical subroutines have to be called inside the loops, a method proved to be computational time consuming. The alternative is to build a module that solves the biochemical processes for a 1D array of control volumes. The MOHID system has an interface called *ModuleInterface*, responsible for transferring information (forcing conditions and state variables) from 1D, 2D or 3D structured grids to a 1D array and for calling the 0D biochemical module subroutines. MOHID system was developed following an objectoriented programming philosophy. This interface is a class (or module) currently used to transfer information from the module responsible for the transport processes in the water column to the module responsible for the biochemical process in the sediment. The same happens between the sediment transport module and sediment biochemical processes modules. In this way, *ModuleWaterQuality* is a zero-dimensional ecological model, which can be used by the eulerian or lagrangian transport modules. Figure 1 represents the information flux between the water quality module and other modules.

Figure 2. Information flux between Water Quality Module and the other modules.

2.2 Constructing the Interface

The interface construction phase consists on the memory allocation and options consistency to couple the transport model to the biochemical model. Thus, the variables needed to initialize the interface are:

• Name of the biochemical model to be executed;

- An array with the names of the state variables (properties) being modeled by the transport model, which have been defined to have sinks and sources terms using the defined biochemical equations; this is important, so that properties are defined coherently in both models and the properties indexing task can be performed straightforwardly;
- A mapping matrix (WaterPointsxD, being x the number of dimensions) that takes the value of 0 for land points and 1 for water points; this is used to define the size of the 1D arrays where most information will be stored and then given to the biochemical module.
- A size variable (SizexD, being x the number of dimensions), used to translate (loop through) 2D and 3D matrixes to 1D arrays.

2.3 Interfacing during the run

ModuleInterface first task is to gather information on state variables needed by the biochemical models. So, the transport model must loop through all properties, sending its concentration as an argument. Optionally, other variables can also be sent, like radiation at the top of the control volume, control volume thickness and the light extinction coefficient field. Mapping arrays (WaterPointsxD and OpenPointsxD) must be given so that biochemical processes can be computed, if desired, for example, only in covered cells. OpenPointsxD is a variable, which takes the value of 0 if the cell is uncovered and 1 if it is covered with water.

State variables information (i.e. concentration of properties which have sinks and sources defined by the biochemical module) is stored in a bi-dimensional array with size equal to the number of properties versus the number of control volumes, with each property properly indexed in this array. The indexing is done in the constructing phase in agreement with the two models. On the other hand, properties like temperature and salinity as well as light and mapping variables, are stored in specific 1D arrays.

The loop through all the properties continues until all information is gathered. This is achieved by creating a logical array with the indexed properties, defining the ones that have already been added to the state variables array. When everything is ready, the biochemical model is then called, looping through the number of control volumes, changing the state variables values.

The biochemical model time step can be, and often is, different from the transport model time step. The latter needs, due to numerical reasons, smaller time steps than the biochemical models. Thus, in each biochemical time step the state variables values are previously stored in another array, allowing to compute the concentration variation during this time step. This flux is then available to the transport model to actualize the properties concentration in its own time step.

3 Pelagic Processes Description

The ecological model described in *Module Water Quality* is adapted from EPA (1985) and pertain to the category of ecosystem simulations models i.e. sets of conservation equations describing as adequately as possible the working and the interrelationships of real ecosystem components. The nitrogen, oxygen, phosphorus and silica biogeochemical cycles are included. A brief description of these cycles is presented in the next sections.

Many of the equations are written as dependent on a regulating factor, which contains the functional response of the organism to some environmental parameters such as light, nutrients or temperature. When growth is a

7

function of many resources, there is a large range of functional forms that might express the joint dependence. To control the various possibilities, it is common to think of separate resources as limiting factors reducing some theoretical maximum growth rate - factors that can be determined separately and the combined by a small number of ways.

Each growth limitation factor can range from a value of 0 to 1. A value of 1 means the factor does not limit growth (i.e. is at optimum intensity, nutrients are available in excess, etc) and a value of 0 means the factor is so severely limiting that growth is inhibit entirely.

The model uses:

- A minimum formulation only for nutrients limitation, in which the most severely limiting factor alone is assumed to limit growth. This formulation is based on "Liebig's law of the minimum" which states that the factor in shortest supply will control the growth of algae;
- A multiplicative formulation for the three main limiting factors (light, nutrients and temperature) in which all factors are multiplied together. This approach assumes that several factors in short supply will more severely limit growth than a single factor in short supply. The major criticism of this approach is that the computed growth rates may be excessively low when several factors are limiting. Also, the severity of the reduction increases with the number of limiting nutrients considered in the model, making comparison between models difficult.

3.1 State Variables

Variable	Description		Unit
$\Phi^{\it phy}$	Flagellates Concentration	Organism	[mg C/l]
$\Phi^{\it dia}$	Diatoms Concentration		[mg C/l]
Φ^{zoo}	Mesozooplankton Concentration		[mg C/l]
Φ^{cil}	Microzooplankton Concentration		[mg C/l]
Φ^{bact}	Bacteria Concentration		[mg C/l]
$\Phi^{\scriptscriptstyle N\!H_4}$	Ammonia Concentration	Nitrogen	[mg N/l]
Φ^{NO_2}	Nitrite Concentration		[mg N/l]
Φ^{NO_3}	Nitrate Concentration		[mg N/l]
Φ^{PON}	Particulate Organic Nitrogen Concentration		[mg N/l]
Φ^{DONnr}	Dissolved Organic Nitrogen Non Refractory Concentration		[mg N/l]
Φ^{DONre}	Dissolved Organic Nitrogen Refractory Concentration		[mg N/l]
$\Phi^{{\scriptscriptstyle I\!P}}$	Inorganic Phosphorus Concentration	Phosphorus	[mg P/l]
Φ^{POP}	Particulate Organic Phosphorus Concentration		[mg P/l]
Φ^{DOPnr}	Dissolved Organic Phosphorus Non Refractory Concentration		[mg P/l]
$\Phi^{{\scriptscriptstyle DOPre}}$	Dissolved Organic Phosphorus Refractory Concentration		[mg P/l]
$\Phi^{\textit{DissSi}}$	Dissolved Silica Concentration	Silica	[mg Si/l]
$\Phi^{\it BioSi}$	Biogenic Silica Concentration		[mg Si/l]
Φ^{oxy}	Dissolved Oxygen Concentration	Oxygen	[mg O ₂ /l]

Table 1. Water Quality Module available State Variables.

3.2 Organisms

3.2.1 Flagellates and Diatoms

Flagellates and Diatoms are described in terms of carbon concentration (mgC / l). The model assumes three limitations affecting the organisms maximum growth rate, μ_{max}^{X} : Temperature $\Psi(T)^{X}$, light effect $\Psi(E)^{X}$ and nutrient limitation, which is computed as the minimum of $\Psi(N)^{X}$, $\Psi(P)^{X}$ (and $\Psi(Si)^{X}$ for Diatoms simulation). These two groups of primary producers share the same formulations for the most part of the processes differing just in terms of parameters used by the model. The model is able to consider either one or the two groups of primary producers.

The simulation of the primary producers (Flagellates and/or Diatoms) is developed with the following considerations (Figure 3):

- Organisms consume inorganic nutrients (ammonia and nitrate from the nitrogen cycle and inorganic phosphorus from the phosphorus cycle, and silicate in the case of diatoms) depending on their availability;
- Organisms' growth is also influenced by the temperature and availability of light as a source of energy for photosynthesis;
- Dissolved oxygen is produced during respiration process consumes oxygen and produces ammonia;
- By excretion phytoplankton produces dissolved organic material (DONr, DONnr, DOPr and DOPnr);
- By mortality phytoplankton increases the dissolved organic material and the particulate organic material (PON and POP) in the system;
- By zooplankton grazing, the concentration of flagellates and diatoms decreases.
- By ciliates grazing, the concentration of flagellates decreases;
- Settling process is modeled in the *ModuleWaterProperties* as for any other particulate property in the model.

The rate equation used by the model to compute flagellates and diatoms evolution and the processes formulations are synthetically described in the next tables. Table 9 and Table 10 list the default values considered by the model to compute flagellates and diatoms evolution, respectively.

Figure 3. Flagellates and Diatoms Processes.

$$\frac{\partial \Phi^{X}}{\partial t} = \left(\mu^{X} - r^{X} - ex^{X} - m^{X}\right) \Phi^{X} - G^{X} \qquad X \equiv phy, dia$$

μ^{X}	Gross Growth Rate	[d-1]
r^{X}	Total Respiration Rate	[d-1]
ex^X	Excretion Rate	[d-1]
m^X	Natural Mortality Rate (non-predatory)	[d-1]
G^X	Grazing Rate1	[mg C/l.d-1]

¹ Described in section 3.2.4

MOHID User Meeting / Course

Symbol	Description	Unit	Formulation		
u^X	Cross Crowth Pata	<i>a</i> -1	$\mu^{phy} = \mu^{phy}_{max}.\Psi(T)$	^{phy} . $\Psi(I)^{phy}$. $Min\left[\Psi(N)^{phy}, \Psi(P)^{phy}\right]$	
μ	GIOSS GIOWLII Kate	u	$\mu^{dia} = \mu^{dia}_{max} \cdot \Psi(T)^{dia} \cdot \Psi(I)^{dia} \cdot Min \Big[\Psi(N)^{dia} \cdot \Psi(P)^{dia} \cdot \Psi(Si)^{dia} \Big]$		
$\mu_{max}^X(T_{ref})$	Maximum Gross growth Rate at the reference temperature			$[d^{-1}]$	
$\Psi(T)^X$	Temperature Limitation Factor			adim	
$\Psi(I)^X$	Light Limitation Factor			adim	
$\Psi(N)^X$	Nitrogen Limitation Factor			adim	
$\Psi(P)^X$	Phosphorus Limitation Factor			adim	
$\Psi(Si)^{dia}$	Silica Limitation Factor			adim	

Table 2. Flagellat	es/Diatoms Gross	Growth Rate
--------------------	------------------	--------------------

Symbol	Description	Unit	Formulation
$\Psi(T)^{X}$	Temperature Limitation Factor	adim	$\Psi(T)^{X} = K_{A}(T)^{X} K_{B}(T)^{X}$
$K_{A}(T)^{X}$	-	adim	$K_{A}(T)^{X} = \frac{K_{1}^{X} e^{r_{1}^{X} \cdot \left(T - T_{\min}^{X}\right)}}{1 + K_{1}^{X} \cdot \left(e^{r_{1}^{X} \cdot \left(T - T_{\min}^{X}\right)} - 1\right)}$
$K_{\scriptscriptstyle B}(T)^X$	-	adim	$K_{B}(T)^{X} = \frac{K_{4}^{X} \cdot e^{\gamma_{2}^{X} \cdot \left(T_{\max}^{X} - T\right)}}{1 + K_{4}^{X} \cdot \left(e^{\gamma_{2}^{X} \cdot \left(T_{\max}^{X} - T\right)} - 1\right)}$
γ ₁ ^X	-	adim	$\gamma_{1}^{X} = \frac{Ln \frac{K_{2}^{X} (1 - K_{1}^{X})}{K_{1}^{X} (1 - K_{2}^{X})}}{T_{opt \min}^{X} - T_{\min}^{X}}$
γ_2^X	-	adim	$\gamma_{2}^{X} = \frac{Ln \frac{K_{3}^{X} \left(1 - K_{4}^{X}\right)}{K_{4}^{p} \left(1 - K_{3}^{X}\right)}}{T_{opt_{max}}^{X} - T_{max}^{X}}$
K_1^X	Constant to control temperature respon	nse curve shape	adim
K_2^X	Constant to control temperature respon	nse curve shape	adim
K_{3}^{X}	Constant to control temperature respon	nse curve shape	adim
K_4^{X}	Constant to control temperature respon	nse curve shape	adim
T_{\min}^{X}	Minimum tolerable temperature		[ºC]
X T _{max}	Maximum tolerable temperature		[ºC]
$T_{opt_{\min}}^X$	Minimum temperature of the optimal	interval for organ	nism activity [ºC]
$T_{opt_{\max}}^X$	Maximum temperature of the optimal	interval for orga	nism activity [ºC]

Table 3. Temperature Limitation Factor.

Symbol	Description	Unit	Formulation			
$\Psi(I)^{X}$	Light Limitation Factor	adim	$\Psi(I)^{X} = \frac{e^{I}}{k^{X} \cdot z} \times \left(e^{-\frac{I_{0}}{I_{opt}^{X}} \times e^{ik^{X} \cdot z)}} - e^{-\frac{I_{0}}{I_{opt}^{X}}} \right)$			
			Constant	k = Constant		
			Parsons et al. 1984	k = 0.04 + 0.0088Chla $+ 0.54$ Chla ^{2/3}		
k	Light extinction coefficient in the water column	[m ⁻¹]	Portela, 1996 (Tagus Estuary)	k = 1.24 + 0.036SPM		
			Combined Parsons and Portela	$k = [0.04 + 0.0088Chla + 0.54Chla^{2/3}] \times 0.7 + [0.036 \times 0.5 \times SPM]$		
			Multiparameters	$k = \sum k^{X} \Phi^{X}$		
Chla	Chlorophyll a concentration	µgChla/l	$Chla = \Phi^X \times \alpha_{Chla:C} \times 10$	000		
SPM	Solid Suspended Matter Concentration	adim	$SPM = \sum \Phi^X X \equiv coesivese di$	m ents, PON, POP, phy, dia, zoo		
Ζ	Depth		[m]			
$I_{o 2}$	Incident Radiation					
I_{opt}^X	Optimum light intensity	y for photosynt	hesis [W/m ²]			
$lpha_{{}_{Chloa:C}}$	Chlorophyll_a/C Ratio		[μgChla/ μ	gC]		

Table 4. Light Limitation Factor.

² Computed in Light Extinction Module

Symbol	Description	Unit	Formulation
$\Psi(N)^X$	Nitrogen Limitation Factor	adim	$\Psi(N)^{X} = \frac{\Phi^{NH_{4}} + \Phi^{NO_{3}}}{K_{N}^{X} + \Phi^{NH_{4}} + \Phi^{NO_{3}}}$
$\Psi(P)^X$	Phosphorus Limitation Factor	adim	$\Psi(P)^{X} = \frac{\Phi^{IP}}{K_{P}^{X} + \Phi^{IP}}$
$\Psi(Si)^{dia}$	Silica Limitation Factor in diatoms growth	adim	$\Psi(Si)^{dia} = \frac{\Phi^{DissSi}}{K_{Si}^{dia} + \Phi^{DissSi}}$
K_N^X	Nitrogen half-saturation constant	[mg	N/I]
K_P^X	Phosphorus half-saturation constan	t [mg	P/1]
$K_{\it Si}^{\it dia}$	Silica half-saturation constant	[mg	Si/1]

Table 5. Nutrients Linitation Factor.

Table 6. 7	[otal	Respiration	Rate.

Symbol	Description	Unit	Formulation
r^{X}	Total Respiration Rate	d-1	$r^{X} = k_{re}^{X} e^{(0.069T)} + k_{rp}^{X} \mu^{X}$ [EPA, 1985]
Т	Temperature		[@C]
k_{re}^X	Endogenous respiration constar	ıt	$[\mathbf{d}^{\cdot 1}]$
k_{rp}^X	Photorespiration fraction	:	adim
μ^{X}	Growth Rate		[d-1]

Table 7. Excretion Rate.

Symbol	Description	Unit	Formulation
<i>ex^x</i>	Excretion Rate	d-1	$ex^{X} = \varepsilon^{X} \mu^{X} (1 - \psi(I)^{X}) \text{ [EPA, 1985]}$
ε^X	Excretion constant		adim
μ^{X}	Growth Rate		[d-1]
$\psi(I)^X$	Light Limitation Factor	i	adim

Table 8. N	Natural Mo	rtality (Non	Grazing) Rate.
------------	------------	--------------	----------------

Symbol	Description	Unit	Formulation
m ^X	Natural Mortality Rate	d-1	$m^{X} = m_{\max}^{X} \frac{\frac{\Phi^{X}}{\mu^{X}}}{K_{\pi}^{x} + \frac{\Phi^{X}}{\mu^{X}}}$
m_{\max}^X	Maximum mortality rate		[d-1]
$K_{_m}^{_X}$	Mortality half-saturation rate		[mgC/l.d ⁻¹]
μ^{X}	Growth Rate		$[d_{-1}]$

Symbol	Description	Unit	Default Value	Keyword
$\mu^{\scriptscriptstyle phy}_{\scriptscriptstyle m max}$	Flagellates Maximum gross growth rate	d ⁻¹	2	GROWMAXF
k_{re}^{phy}	Endogenous respiration constant for flagellates	d-1	0.0175	FENDREPC
$k_{\scriptscriptstyle rp}^{\scriptscriptstyle phy}$	Fraction of actual photosynthesis which is oxidized by photorespiration for flagellates	adim	0.125	PHOTORES
${m {arepsilon}}^{phy}$	Excretion Constant for flagellates	adim	0.07	EXCRCONS
$m_{ m max}^{phy}$	Maximum Mortality Rate for flagellates	d -1	0.02	FMORTMAX
$K_{ m m}^{phy}$	Mortality half-saturation rate for flagellates	mg C l ⁻¹ d ⁻	0.3	FMORTCON
E^{phy}	Assimilation efficiency of the flagellates by zooplankton	adim	0.8	ASS_EFIC
$K_{\scriptscriptstyle N}^{ phy}$	Nitrogen half-saturation constant for flagellates	mg N l-1	0.014	NSATCONS
K_P^{phy}	Phosphorus half-saturation constant for flagellates	mg P l-1	0.001	PSATCONS
I_{opt}^{phy}	Optimum light intensity for flagellates photosynthesis	Wm ⁻²	121	PHOTOIN
$T_{opt_{\min}}^{phy}$	Minimum temperature of the optimal interval for flagellates photosynthesis	٥C	25	TOPTFMIN
$T_{opt_{\max}}^{phy}$	Maximum temperature of the optimal interval for flagellates photosynthesis	٥C	26.5	TOPTFMAX
T_{\min}^{phy}	Minimum tolerable temperature for flagellates photosynthesis	٥C	4	TFMIN
$T_{ m max}^{\ phy}$	Maximum tolerable temperature for flagellates photosynthesis	٥C	37	TFMAX
K_1^{phy}	Constant to control temperature response curve shape on flagellates	adim	0.05	TFCONST1
K_2^{phy}	Constant to control temperature response curve shape on flagellates	adim	0.98	TFCONST2
K_3^{phy}	Constant to control temperature response curve shape on flagellates	adim	0.98	TFCONST3
K_4^{phy}	Constant to control temperature response curve shape on flagellates	adim	0.02	TFCONST4
$lpha_{N:C}^{phy}$	Flagellates Nitrogen/Carbon Ratio	mgN/mgC	0.18	FRATIONC
$lpha_{P:C}^{phy}$	Flagellates Phosphorus/Carbon Ratio	mgP/mgC	0.024	FRATIOPC
f_{inorg}^{phy}	Fraction of soluble inorganic material excreted by flagellates	adim	0.4	FSOLEXCR
$f_{\it orgD}^{\it phy}$	Fraction of dissolved organic material excreted by flagellates	adim	0.5	FDISSDON

Table	9.	Flagellates	Parameters.
raute		ragenaces	r arameters.

Symbol	Description	Unit	Default Value	Keyword
$\mu^{\scriptscriptstyle dia}_{\scriptscriptstyle m max}$	Diatoms Maximum gross growth rate	d-1	3	DIGROWMAX
$k_{\scriptscriptstyle re}^{\scriptscriptstyle dia}$	Diatoms Endogenous respiration constant	d-1	0.0175	DIFENDREPC
k_{rp}^{dia}	Fraction of actual photosynthesis which is oxidized by photorespiration for Diatoms	adim	0.125	DIPHOTORES
${m {\cal E}}^{dia}$	Diatoms Excretion Constant	adim	0.07	DIEXCRCONS
$m_{ m max}^{dia}$	Maximum Mortality Rate for Diatoms	d-1	0.02	DIMORTMAX
$K_{ m m}^{\it dia}$	Half-saturation for mortality for Diatoms	mg C l-1d-1	0.3	DIMORTCON
E^{dia}	Assimilation efficiency of Diatoms by zooplankton	adim	0.8	DIASS_EFIC
$K_{\scriptscriptstyle N}^{\it dia}$	Nitrogen half-saturation constant for Diatoms	mg N l-1	0.015	DINSATCONS
K_P^{dia}	Phosphorus half-saturation constant for Diatoms	mg P l-1	0.002	DIPSATCONS
K_{Si}^{dia}	Silicate half-saturation constant for Diatoms	mg Si l-1	0.08	DISISATCONS
I_{opt}^{dia}	Optimum light intensity for Diatoms photosynthesis	Wm-2	121	DIPHOTOIN
$T^{dia}_{opt_{\min}}$	Minimum temperature of the optimal interval for Diatoms photosynthesis	⁰C	25	DITOPTMIN
$T^{dia}_{opt_{\max}}$	Maximum temperature of the optimal interval for Diatoms photosynthesis	⁰C	26.5	DITOPTMAX
T_{\min}^{dia}	Minimum tolerable temperature for Diatoms growth	⁰C	4	DITMIN
$T_{\rm max}^{dia}$	Maximum tolerable temperature for Diatoms growth	₽C	37	DITMAX
K_1^{dia}	Constant to control temperature response curve shape on Diatoms	adim	0.1	DITCONST1
K_2^{dia}	Constant to control temperature response curve shape on Diatoms	adim	0.98	DITCONST2
K_3^{dia}	Constant to control temperature response curve shape on Diatoms	adim	0.98	DITCONST3
K_4^{dia}	Constant to control temperature response curve shape on Diatoms	adim	0.02	DITCONST4
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle dia}$	Diatoms Nitrogen/Carbon Ratio	mgN/mgC	0.18	DIRATIONC
$lpha_{P:C}^{dia}$	Diatoms Phosphorus/Carbon Ratio	mgP/mgC	0.024	DIRATIOPC
$lpha^{dia}_{Si:C}$	Diatoms Silica/Carbon Ratio	mgSi/mgC	0.6	DIRATIOSIC
$f_{\it inorg}^{\it dia}$	Fraction of soluble inorganic material excreted by Diatoms	adim	0.4	DISOLEXCR
$f_{\it orgD}^{\it dia}$	Fraction of dissolved organic material excreted by Diatoms	adim	0.5	DIDISSDON

Table 10	. Diatoms	Parameters.
----------	-----------	-------------

3.2.2 Micro and Mesozooplankton

Figure 4 represents the main processes considered by the model for microzooplankton and mesozooplankton simulation and the tables below describe the formulations used to compute the properties concentration evolution in time, described in carbon concentration (mg C/l). Like in primary producers, the two zooplankton groups have similar formulation differing in terms of specific parameters and grazing possibilities. Globally, zooplankton (micro and mesozooplankton) considers:

- Organisms' growth is influenced by the temperature and prey concentration;
- Respiration process consumes oxygen and produces ammonia;
- Excretion represents a source of dissolved and particulate organic material (DONr, DONnr, DOPr and DOPnr) in the system;
- By mortality, zooplankton increases the particulate organic material (PON and POP);
- Microzooplankton grazing on bacteria and flagellates;
- Mesozooplankton grazing on diatoms and flagellates.

Figure 4. Micro and Mesozooplankton Processes.

$$\frac{\partial \Phi^{X}}{\partial t} = \left(\mu^{X} - r^{X} - ex^{X} - m^{X}\right) \Phi^{X} - G^{X} \qquad X \equiv zoo, cil$$

μ^{X}	Gross Growth Rate	$[d^{-1}]$
r^{X}	Total Respiration Rate	$[d^{-1}]$
ex^{X}	Excretion Rate	$[d^{-1}]$
m^X	Natural Mortality Rate (non-predatory)	$[d^{_1}]$
G^{X}	Grazing Rate ³	[mg C/l.d ⁻¹]

³ Described in section 3.2.4

Symbol	Description	Unit	Formulation			
			1 Flagellates Group 1 Zooplankton Group	$\mu^{zoo} = \mu^{zoo}_{_{\mathrm{max}}}$	$\Psi^{o}.\Psi(T)^{zoo}.\Psi(F)^{zoo}$	
μ^{X}	Gross Growth Rate	d-1	>1 Flagellates Group	$\mu^{zoo} = \sum g^{\chi}_{zoo} G^{\chi}_{zoo}$	$X \equiv phy, dia, cil$	
			>1 Zooplankton Group	$\mu^{_{cil}} = \sum g^{_X}_{cil} G^{_X}_{cil} \qquad \lambda$	X = phy, bact	
$\Psi(T)^X$	Temperature Limitation Factor	adim		See Table 3		
$\Psi(F)^{zoo}$	Food Limitation Factor	adim		$\Psi(F)^{zoo} = \begin{cases} 1 - e^{-\Lambda(\Phi^X)} \\ 0 & \text{if } \Phi_{phy} \end{cases}$	$\Phi_{\min X}^{200}$) < $\Phi_{\min X}^{200}$	
r^X	Respiration Rate	d-1		$r^{X} = \rho_{carbon}^{X} \Psi(T)$) ²⁰⁰	
ex^{X}	Excretion Rate	d-1		$ex^{X} = \left(k_{ex}^{X}b_{ex}^{X}\right)^{T}$	r	
Y	Natural Mortality Rate (Non-	. 1	$\int_{X} \left\{ \frac{a_m^X}{a_m} + m_{\min}^X \text{if } \Phi^{\text{prey}} > \Phi_{\min}^X \right\}$		$\Phi^{prey} = \sum \Phi^{Y}$	
<i>m</i> "	grazing mortality	d-1	$m = \begin{cases} \mathbf{u}^{X} \\ m_{\max}^{X} \end{cases}$	$if \Phi^{prey} \leq \Phi^X_{\min_{prey}}$	$Y = \begin{cases} phy, dia, cil & if \ X = zoo\\ phy, bact & if \ X = cil \end{cases}$	
G^{zoo}	Grazing Rate	d-1	$G^{zoo} = p^{zoo} \Phi^{zoo}$			
μ_{\max}^{X}	Maximum Gross growth Rate			[d ⁻¹]		
$g_{\scriptscriptstyle Y}^{\scriptscriptstyle X}$	Assimilation Coefficient of Y by X			adim		
Λ	Ivlev grazing constant			[l/mgC]		
$ ho_{\scriptscriptstyle carbon}^{\scriptscriptstyle X}$	Carbon consumption Rate in respira	tion		[d ⁻¹]		
k_{ex}^X	Excretion Rate at 0°			[d ⁻¹]		
b_{ex}^X	Constant for excretion curve			adim		
a_m^X	Constant for mortality curve			adim	adim	
m_{\min}^X	Minimum Natural Mortality Rate			$[d^{-1}]$		
$m_{\rm max}^X$	Maximum Natural Mortality Rate			$[d^{-1}]$		
$\Phi^X_{\min_{prey}}$	Minimum prey concentration for gr	azing		[mgC/l]	[mgC/l]	
$p^{_{zoo}}$	Zooplankton predatory mortality ra	te: predatio	n by higher trophic lev	vels [d ⁻¹]		
G_{Y}^{X}	Y Grazing on X			[mg C/l.d ⁻¹]		

Table 11. Micro and Mesozooplankton Formulations.

Symb	Description	Unit	Value	Keyword
ol				
$\mu_{\scriptscriptstyle m max}^{\scriptscriptstyle zoo}$	Zooplankton Maximum gross growth rate	d-1	0.15	GROWMAXZ
$\alpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle zoo}$	Zooplankton Nitrogen/Carbon Ratio	mg N/mgC	0.15	ZRATIONC
$\alpha_{P:C}^{zoo}$	Zooplankton Phosphorus/Carbon Ratio	mg P/mgC	0.024	ZRATIOPC
f_{inorg}^{zoo}	Soluble inorganic fraction on the mesozooplankton excretions	adim	0.4	ZSOLEXCR
f_{oraD}^{zoo}	Fraction of dissolved organic material excreted by mesozooplankton	adim	0.5	ZDISSDON
T _{opt}	Minimum temperature of the optimal interval for mesozooplankton growth	⁰C	24.8	TOPTZMIN
$T_{opt_{max}}^{zoo}$	Maximum temperature of the optimal interval for mesozooplankton growth	٥C	25.1	TOPTZMAX
T_{min}^{zoo}	Minimum temperature mesozooplankton growth	°C	5	TZMIN
T ^{zoo}	Minimum temperature of the optimal interval for mesozooplankton growth	٥C	35	TZMAX
K_1^{zoo}	Constant to control temperature response curve shape on mesozooplankton	adim	0,05	TZCONST1
K_2^{zoo}	Constant to control temperature response curve shape on mesozooplankton	adim	0,98	TZCONST2
<i>K</i> ^{zoo} ₃	Constant to control temperature response curve shape on mesozooplankton	adim	0,98	TZCONST3
K_4^{zoo}	Constant to control temperature response curve shape on mesozooplankton	adim	0,02	TZCONST4
$ ho_{carbon}^{zoo}$	Rate of mesozooplankton consumption of Carbon by respiration and non- predatory mortality	d-1	0.036	ZREFRESP
Λ	Ivlev grazing constant	l/mgC	1.6	IVLEVCON
p^{zoo}	Zooplankton predatory mortality rate: predation by higher trophic levels	d-1	0.02	ZPREDMOR
$\Phi_{\min_{nm}}^{zoo}$	Minimum prey concentration for mesozooplankton grazing	mgC/l	0.0045	ZOOPREYMIN
$\Phi_{\min_{ad}}^{zoo}$	Minimum Microzooplankton concentration for mesozooplankton grazing	mgC/l	0.0045	GRAZCILMIN
$\Phi_{\min_{phy}}^{zoo}$	Minimum Flagellates concentration for mesozooplankton grazing	mgC/l	0.0045	GRAZFITOMIN
$\Phi^{zoo}_{\min_{dia}}$	Minimum Diatoms concentration for mesozooplankton grazing	mg C/l	0.0045	DIGRAZMIN
k_{ex}^{zoo}	Zooplankton Excretion Rate	d-1	0.02	ZEXCFAC
b_{ex}^{zoo}	Constant for mesozooplankton excretion curve	adim	1.0305	ZEXCCONS
a_m^{zoo}	Constant for mesozooplankton mortality curve	adim	0.0	MORTZCOEF
m_{\min}^{zoo}	Minimum Rate for mesozooplankton Natural Mortality	d-1	0.001	MINMORTZ
$m_{\rm max}^{zoo}$	Maximum Rate for mesozooplankton Natural Mortality	d-1	0.04	MAXMORTZ
K_{graz}^{zoo}	Half-Saturation Constant for Grazing	mgC/l	0.85	INGCONSZ
c_{phv}^{zoo}	Capture Efficiency of flagellates by mesozooplankton	adim	0.8	ZOOEFFCAPHY
	Capture Efficiency of Microzooplankton by mesozooplankton	adim	0.2	ZOOEFFCAPCIL
c_{dia}^{zoo}	Capture efficiency of Diatoms by mesozooplankton	adim	0.8	DIZOOEFFCAP
I ^{zoo} _{max}	Zooplankton maximum ingestion rate	d-1	1.0	ZINGMAX
$g_{_{phy}}^{_{zoo}}$	Assimilation Coefficient of Flagellates by mesozooplankton	adim	0.8	ZOPHYASS
$g_{\scriptscriptstyle cil}^{\scriptscriptstyle zoo}$	Assimilation Coefficient of Microzooplankton by mesozooplankton	adim	0.8	ZOCILASS
$g^{\scriptscriptstyle zoo}_{\scriptscriptstyle dia}$	Assimilation Coefficient of Diatoms by mesozooplankton	adim	0.8	DIZOASS
$ ho_{_{phy}}^{_{zoo}}$	Proportion of flagellates in mesozooplankton ingestion	adim	0.3	PHYRATING
$ ho_{cil}^{zoo}$	Proportion of Microzooplankton in mesozooplankton ingestion	adim	0.3	CILRATINGZOO
$ ho_{dia}^{zoo}$	Proportion of Diatoms in mesozooplankton ingestion	adim	0.3	DIRATINGZOO

Table 12. Mesozooplankton Parameters.

Símbolo	Description	Unit	Value	Keyword
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle cil}$	Microzooplankton Nitrogen/Carbon Ratio	mg N/mgC	0.16	CRATIONC
$lpha_{P:C}^{cil}$	Microzooplankton Phosphorus/Carbon Ratio	mg P/mgC	0.024	CRATIOPC
$\Phi^{cil}_{\min_{bact}}$	Minimum concentration of bacteria for Microzooplankton grazing	mgC/l	0.0045	GRAZBACMIN
$\Phi^{cil}_{{ m min}_{phy}}$	Minimum concentration of flagellates for Microzooplankton grazing	mgC/l	0.0045	CILGRAZPHYMIN
$\Phi^{cil}_{{ m min}_{prey}}$	Minimum concentration of prey for Microzooplankton grazing	mgC/l	0.0045	CILPREYMIN
$r^{cil}(T^{ref})$	Microzooplankton respiration rate at the reference temperature	d-1	0.02	CREFRESP
κ_{ex}^{cil}	Microzooplankton Excretion Rate	d-1	0.02	CEXCFAC
b_{ex}^{cil}	Constant for Microzooplankton excretion curve	adim	1.03505	CEXCCONS
a_m^{cil}	Constant for Microzooplankton mortality curve	adim	0.0	MORTCICOEF
m_{\min}^{cil}	Minimum Rate for Microzooplankton Natural Mortality	d-1	0.0	MINMORTCI
$m_{ m max}^{cil}$	Maximum Rate for Microzooplankton Natural Mortality	d-1	0.044	MAXMORTCI
K_{graz}^{cil}	Half-Saturation Constant for Microzooplankton Grazing	mgC/l	0.85	INGCONSC
C_{bact}^{cil}	Capture efficiency of bacteria by Microzooplankton	adim	0.5	CILEFFCAPBA
$c_{_{phy}}^{cil}$	Capture efficiency of flagellates by Microzooplankton	adim	0.5	CILEFFCAPPHY
$I_{ m max}^{cil}$	Microzooplankton maximum ingestion rate	d ⁻¹	1.0	CINGMAX
$g_{\scriptscriptstyle bact}^{\scriptscriptstyle cil}$	Assimilation Coefficient of bacteria by Microzooplankton	adim	0.5	CILBACASS
$g^{\scriptscriptstyle cil}_{\scriptscriptstyle phy}$	Assimilation Coefficient of flagellates by Microzooplankton	adim	0.5	CILPHYASS
$ ho_{_{bact}}^{_{cil}}$	Proportion of bacteria in Microzooplankton ingestion	adim	0.5	BACINGCIL
$ ho_{_{phy}}^{_{cil}}$	Proportion of flagellates in Microzooplankton ingestion	adim	0.5	PHYINGCIL

Table 13.	. Microzooplankto	n Parameters.

3.2.3 Bacteria

Figure 5 represents the main processes involving heterotrophic bacteria, described in the model in terms of carbon concentration (mg C/l). Formulations used to compute bacteria concentration evolution in time are shown in the tables below. Globally the model considers:

- The specific uptake rate of bacteria is dependent on resource availability (organic substrate), accordingly to a Michaelis-Menten function, and on temperature;
- For ammonium uptake to take place, DOM or POM concentrations must be higher than the bacteria minimum substrate concentration needed for growth, representing the Carbon limitation for bacteria growth;
- For DOM or/and POM uptake to take place, ammonium concentrations must be higher than the bacteria minimum substrate concentration needed for growth, representing the Nitrogen limitation for bacteria growth;
- Total uptake rate of bacteria is the sum of the specific uptake rate for each one of the nutrient sources (DOMnr, ammonium, and POM);
- Nitrogen uptake is converted in carbon units using the N:C ratio of bacteria;
- Excretion represents a source of dissolved organic material (Non-Refractory Dissolved Organic Nitrogen) in the system;
- By mortality, bacteria increases the particulate organic material (Particulate Organic Nitrogen) and ammonia.
- Microzooplankton grazing on bacteria.

Figure 5. Bacteria processes..

$$\frac{\partial \Phi^{bact}}{\partial t} = \left(\mu^{bact} - e^{bact} - m^{bact}\right) \Phi^{bact} - G^{bact}$$

$\mu^{^{bact}}$	Total bacterial uptake	[d-1]
e^{bact}	Excretion Rate	[d-1]
m^{bact} G^X	Natural Mortality Rate (non-predatory) Grazing Rate ⁴	[d ⁻¹] [mg C/l.d ⁻¹]

⁴ Described in section 3.2.4

Symbol	Description Unit		Formulation
$\mu^{^{bact}}$	Total Bacterial Uptake	d-1	$\mu^{bact} = \sum_{Y=1}^{n} \mu_{Y}^{bact} \qquad Y \equiv NH_{,}, DONnr, PON$
ubact	Specific uptake rate for each nutrient	d-1	$\mu_{NH_4}^{bact} = \frac{\mu_{\max}^{bact} \cdot \Psi(T)^{bact} \cdot \Psi(F)_{NH_4}^{bact}}{\alpha_{N:C}^{bact}}$
$\mu_{\scriptscriptstyle Y}$	source		$\mu_{Y}^{bact} = \frac{\mu_{\max}^{bact} \cdot \Psi(T)^{bact} \cdot \Psi(F)_{Y}^{bact}}{\alpha_{N:C}^{OM}} Y = DONnr, PON$
$\Psi(F)_{Y}^{bact}$	Food Limitation Factor	adim	$\Psi(F)_{Y}^{bact} = \begin{cases} \Phi^{Y} \\ \overline{K_{N}^{bact} + \Phi^{Y}} \\ 0 & if \ \Phi^{Y} < \Phi_{\min}^{subs} \end{cases} Y \equiv NH_{,}, DONnr, PON$
$\Psi(T)$	Temperature Limitation Factor	See Table 3	
$\mu^{bact}_{\max}(T_{ref})$	Bacteria Maximum Nutrient Uptake at the referen	ire [mgN/mgC.d ⁻¹]	
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle bact}$	Bacteria Nitrogen/Carbon Ratio	[mg N/mgC]	
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle OM}$	Organic Matter Nitrogen/Carbon Ratio	[mg N/mgC]	
$\Phi^{subs}_{ m min}$	Bacteria Minimum Substract Concentration for up	mgN/l	
K_N^{bact}	Half-Saturation constant for nutrient uptake		[mgN/l]
m ^{bact}	Natural Mortality Rate (non-predatory)		[d-1]

Table 14. Bacteria formulations.

Table 15. Bacteria Parameters.

Symbol	Description	Unit	Value	Keyword
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle bact}$	Bacteria Nitrogen/Carbon Ratio	mg N/mgC	0.2	BRATIONC
m ^{bact}	Bacteria Natural Mortality Rate	d-1	0.1	NATMORB
<i>ex</i> ^{bact}	Bacteria Excretion Rate	d-1	0.01	BARESPCO
μ_{\max}^{bact}	Bacteria Maximum Nutrient Uptake at the reference temperature	mgN/mgC.d ⁻¹	0.251	BMAXUPTA
Φ_{\min}^{subs}	Bacteria Minimum Substract Concentration for uptake	mgN/l	0.010	BACMINSUB
\mathbf{K}_{N}^{bact}	Half-Saturation constant for nutrient uptake	mgN/l	0.0008	BACNCONS
$T_{opt_{\min}}^{bact}$	Minimum temperature of the optimal interval for bacteria growth	°C	24.8	TOPTBMIN
$T_{opt_{\max}}^{bact}$	Maximum temperature of the optimal interval for bacteria growth	°C	25.1	TOPTBMAX
T_{\min}^{bact}	Minimum temperature for bacteria growth	°C	5	TBMIN
T_{max}^{bact}	Maximum temperature for bacteria growth	°C	35	TBMAX
K ₁ ^{bact}	Constant to control temperature response curve shape on bacteria	adim	0,05	TBCONST1
K_2^{bact}	Constant to control temperature response curve shape on bacteria	adim	0,98	TBCONST2
K_3^{bact}	Constant to control temperature response curve shape on bacteria	adim	0,98	TBCONST3
K_4^{bact}	Constant to control temperature response curve shape on bacteria	adim	0,02	TBCONST4

3.2.4 Grazing Formulations

Figure 6. Grazing Options.

G^{X}	Total Grazing Rate on X	mgC(X)/l.d-1
G_{Y}^{X}	Y Grazing on X	d-1
	$G^{phy} = G^{phy}_{cil} \Phi^{cil} + G^{phy}_{zoo} \Phi^{zoo}$	
	$G^{dia} = G^{dia}_{zoo} \Phi^{zoo}$	
	$G^{cil} = G^{cil}_{zoo} \Phi^{zoo}$	
	$G^{bact} = G^{bact}_{cil} \Phi^{cil}$	

Symbol	Description	Unit	Formulation
(1) Flagellates and Zooplankton Simulation		L	$G_{zoo}^{phy} = \frac{\mu^{zoo}}{E^{phy}}$
(2) Diatoms a	nd Zooplankton Simulation		$G^{dia}_{zoo} = rac{\mu^{zoo}}{E^{dia}}$
(3) Flagellates	, Diatoms and Zooplankton S	imulation	$G_{zoo}^{dia} = \rho_{zoo}^{dia} . I_{\max}^{zoo} . \Psi_{zoo}^{dia} . \Psi(T)^{zoo}$ $G_{zoo}^{phy} = \rho_{zoo}^{phy} . (I_{\max}^{zoo} - G_{zoo}^{dia}) . \Psi_{zoo}^{dia} . \Psi(T)^{zoo}$
(4) Flagellates, Macrozooplankton, Microzooplankton and Bacteria		ooplankton	$\begin{cases} G_{zoo}^{phy} = \rho_{zoo}^{phy} J_{\max}^{zoo} \cdot \Psi_{zoo}^{phy} \cdot \Psi(T)^{zoo} \\ G_{cil}^{phy} = \rho_{cil}^{phy} J_{\max}^{cil} \cdot \Psi_{cil}^{phy} \cdot \Psi(T)^{cil} \\ G_{zoo}^{cil} = \rho_{zoo}^{cil} \cdot (I_{\max}^{zoo} - G_{zoo}^{phy}) \cdot \Psi_{zoo}^{dia} \cdot \Psi(T)^{zoo} \\ G_{cil}^{bact} = \rho_{cil}^{bact} J_{\max}^{cil} \cdot \Psi_{cil}^{bact} \cdot \Psi(T)^{cil} \end{cases}$
(5) Diatoms, Macrozooplankton, Microzooplankton and Bacteria			$G_{zoo}^{dia} = \rho_{zoo}^{dia} \cdot (I_{\max}^{zoo}) \cdot \Psi_{zoo}^{dia} \cdot \Psi(T)^{zoo}$ $G_{zoo}^{cil} = \rho_{zoo}^{cil} \cdot (I_{\max}^{zoo} - G_{zoo}^{dia}) \cdot \Psi_{zoo}^{cil} \cdot \Psi(T)^{zoo}$ $G_{cil}^{bact} = \rho_{cil}^{bact} \cdot I_{\max}^{cil} \cdot \Psi(T)^{cil}$
(6) Diatoms, Flagellates, Macrozooplankton,Microzooplankton and Bacteria Simulation		Bacteria	$G_{zoo}^{dia} = \rho_{zoo}^{dia} \cdot (I_{\max}^{zoo}) \cdot \Psi_{zoo}^{dia} \cdot \Psi(T)^{zoo}$ $\begin{cases} G_{zoo}^{phy} = \rho_{zoo}^{phy} \cdot (I_{\max}^{zoo} - G_{zoo}^{dia}) \cdot \Psi_{zoo}^{phy} \cdot \Psi(T)^{zoo} \\ G_{cil}^{phy} = \rho_{cil}^{phy} \cdot I_{\max}^{cil} \cdot \Psi_{cil}^{phy} \cdot \Psi(T)^{cil} \end{cases}$ $G_{zoo}^{cil} = \rho_{zoo}^{cil} \cdot (I_{\max}^{zoo} - G_{zoo}^{dia} - G_{zoo}^{phy}) \cdot \Psi_{zoo}^{cil} \cdot \Psi(T)^{zoo} $ $G_{cil}^{bact} = \rho_{cil}^{bact} \cdot I_{\max}^{cil} \cdot \Psi_{cil}^{bact} \cdot \Psi(T)^{cil}$
Ψ_{γ}^{X}	Y Grazing Limitation by X concentration	adim	$\Psi_{Y}^{X} = \begin{cases} \frac{c_{Y}^{X} \cdot \Phi^{X} - \Phi_{Y}^{\min X}}{K_{graz}^{Y} + (c_{Y}^{X} \cdot \Phi^{X} - \Phi_{Y}^{\min X})} & \text{if } (c_{Y}^{X} \cdot \Phi^{X} - \Phi_{Y}^{\min X}) > 0\\ 0 & c.c \end{cases}$
X Y	Predated organism Predator organism		
μ^{X}	Growth rate		d -1
$\Psi(T)^{X}$	Temperature Limitation Factor		adim
K_{graz}^{Y}	Half-saturation constant for pre	dation	[mg C/l]
c_Y^X	Y capture efficiency on X		adim
ρ_Y^{A} $\Phi^{\min X}$	Proportion of X in Y ingestion	Varazina	adim
E^X	Assimilation efficiency of X by	zooplankton (<i>)</i>	X = phy, dia) adim
I_{\max}^{γ}	Y maximum ingestion rate	-	d -1

Table 16. Grazing Formulation.

3.3 Nitrogen Biogeochemical Cycle

Figure 7. Nitrogen Biogeochemical Cycle.

3.3.1 Ammonia

$$\begin{aligned} \begin{array}{l} \begin{array}{l} \displaystyle \frac{\partial \Phi^{NH}}{\partial t} = \left[\int_{avec}^{phy} (ex^{phy} + r^{phy}) \alpha_{N,C}^{phy} - \beta_{NH}^{phy} \mu^{phy} \alpha_{N,C}^{phy} \right] \Phi^{phy}}{fagellates} \\ & + \left[\int_{avec}^{fage} (ex^{dia} + r^{dia}) \alpha_{N,C}^{dis} - \beta_{NH}^{dia} \mu^{dia} \alpha_{N,C}^{dis} \right] \Phi^{dia}}{diatoms} \\ & + \left[ex^{bact} \alpha_{N,C}^{bact} - \mu_{NH}^{bact} \right] \Phi^{bact}}{bacteria} \\ & + \left[(f_{norg}^{roo} ex^{cil} + r^{cil}) \alpha_{N,C}^{roo} \right] \Phi^{roo}}{mescooplankon} \\ & + \left[\int_{morg}^{foo} ex^{ros} + r^{rss} \right] \alpha_{N,C}^{roo} - \beta_{NH}^{phy} \mu^{ssy} \alpha_{N,C}^{phy} \right] \Phi^{phy}}{fagellates} \\ \end{array} \\ & \left\{ \frac{\partial \Phi^{NH}}{\partial t} = \left[\int_{morg}^{phy} (ex^{phy} + r^{phy}) \alpha_{N,C}^{phy} - \beta_{NH}^{phy} \mu^{ssy} \alpha_{N,C}^{phy} \right] \Phi^{phy}}{fagellates} \\ & + \left[\int_{morg}^{foo} ex^{ros} + r^{rssy} \right] \alpha_{N,C}^{roo} - \beta_{NH}^{phy} \mu^{ssy} \alpha_{N,C}^{phy} \right] \Phi^{phy}}{fagellates} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} - \beta_{NH}^{dia} \mu^{stw} \alpha_{N,C}^{dis} \right] \Phi^{dia}} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} - \beta_{NH}^{dia} \mu^{stw} \alpha_{N,C}^{dis} \right] \Phi^{dia}}{diatoms} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} - \beta_{NH}^{dia} \mu^{stw} \alpha_{N,C}^{dis} \right] \Phi^{dia}} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fagellates} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} \\ & + \left[\int_{morg}^{fil} \Phi^{fil} ex^{fil} + r^{fil} \right] \alpha_{N,C}^{fil} \Phi^{fil} ex^{fil} \\ & + \left[\int_{morg}^{fil} \Phi^{fil} ex^{fil}$$

28

3.3.2 Nitrite

$$\frac{\partial \Phi^{NO_2}}{\partial t} = K_{nit} \Phi^{NH_4} - K_{nit} \Phi^{NO_2}$$

3.3.3 Nitrate

$$\frac{\partial \Phi^{NO3}}{\partial t} = -\underbrace{(1 - \beta_{NH_4}^{phy})\alpha^{phy}\mu^{phy}\Phi^{phy}}_{flagellates} - \underbrace{(1 - \beta_{NH_4}^{dia})\alpha^{dia}\mu^{dia}\Phi^{dia}}_{diatoms} + K_{nit}\Phi^{NO_2} - K_{dnit}\Phi^{NO_2}$$

3.3.4 Particulate Organic Nitrogen

$$\frac{\partial \Phi^{PON}}{\partial t} = \underbrace{\left[(1 - f_{inorg}^{phy})(1 - f_{orgD}^{phy})(ex^{phy} + r^{phy}) + m^{phy} \right] \alpha_{N:C}^{phy} \Phi^{phy}}_{flagellates}}_{flagellates} + \underbrace{\left[(1 - f_{inorg}^{dia})(1 - f_{orgD}^{dia})(ex^{dia} + r^{dia}) + m^{dia} \right] \alpha_{N:C}^{dia} \Phi^{dia}}_{diatoms}}_{diatoms} - \underbrace{(\mu_{PON}^{bact} - m^{bact} \alpha_{N:C}^{bact}) \Phi^{bact}}_{bacteria}}_{flagellates}}_{h \pm \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{orgD}^{zoo})ex^{cil} + m^{cil} \right] \alpha_{N:C}^{cil} \Phi^{cil} + (\delta_{N}^{cil} + \varphi_{N}^{cil}) \Phi^{cil}}_{microzoplankton}}_{+ \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{orgD}^{zoo})ex^{zoo} + m^{zoo} + p^{zoo} \right] \alpha_{N:C}^{zoo} \Phi^{zoo} + (\delta_{N}^{zoo} + \varphi_{N}^{zoo}) \Phi^{zoo}}_{mesozoplankton}}$$

 $Without Bacteria = \underbrace{\left[(1 - f_{inorg}^{phy})(1 - f_{org}^{phy})(ex^{phy} + m^{phy}) \alpha_{N:C}^{phy} \Phi^{phy} \right]}_{Jagellates} \\ + \underbrace{\left[(1 - f_{inorg}^{dia})(1 - f_{org}^{dia})(ex^{dia} + m^{dia}) \alpha_{N:C}^{dia} \Phi^{dia} \right]}_{diatoms} \\ + \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{org}^{zoo})ex^{cil} + m^{cil} \right] \alpha_{N:C}^{cil} \Phi^{cil} + (\delta_N^{cil} + \varphi_N^{cil})\Phi^{cil} \right]}_{microzooplankton} \\ + \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{org}^{zoo})ex^{cil} + m^{zoo} + p^{zoo}) \right] \alpha_{N:C}^{zoo} \Phi^{zoo} + (\delta_N^{zoo} + \varphi_N^{zoo})\Phi^{zoo} \right]}_{mesozooplankton} \\ - \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{org}^{zoo})(1 - f_{org}^{zoo})ex^{cin} + m^{zoo} + p^{zoo}) \right] \alpha_{N:C}^{zoo} \Phi^{zoo} + (\delta_N^{zoo} + \varphi_N^{zoo})\Phi^{zoo} \right]}_{mesozooplankton} \\ - \underbrace{\left[(1 - f_{org}^{zoo})K_{dec}^{PON} \Phi^{PON} \right]}_{DONre} \\ - \underbrace{\left[f_{org}PK_{dec}^{PON} \Phi^{PON} \right]}_{ammonia} \end{aligned}$

With

3.3.5 Non Refractory Dissolved Organic Nitrogen

$$\begin{aligned} \frac{\partial \Phi^{DONnr}}{\partial t} &= \underbrace{(1 - f_{inorg}^{phy}) f_{orgD}^{phy}(ex^{phy} + r^{phy}) \alpha_{N:C}^{phy} \Phi^{phy}}_{Jagellates} \\ &+ \underbrace{(1 - f_{inorg}^{dia}) f_{orgD}^{dia}(ex^{dia} + r^{dia}) \alpha_{N:C}^{dia} \Phi^{dia}}_{diatoms} \\ &- \underbrace{\mu_{DONnr}^{bact} \Phi^{bact}}_{bacteria} \\ &+ \underbrace{(1 - f_{inorg}^{cil}) f_{orgD}^{cil} ex^{cil} \Phi^{cil}}_{microzooplankton} \\ &+ \underbrace{(1 - f_{inorg}^{zoo}) f_{orgD}^{zoo} ex^{zoo} \alpha_{N:C}^{zoo} \Phi^{zoo}}_{N:C} \Phi^{phy}}_{Jagellates} \\ \end{aligned}$$
Without Bacteria and
Microzooplankton:

$$\begin{aligned} \frac{\partial \Phi^{DONnr}}{\partial t} &= \underbrace{(1 - f_{inorg}^{phy}) f_{orgD}^{phy}(ex^{phy} + r^{phy}) \alpha_{N:C}^{phy} \Phi^{phy}}_{Microback} \\ &+ \underbrace{(1 - f_{inorg}^{cil}) f_{orgD}^{orgD}(ex^{dia} + r^{dia}) \alpha_{N:C}^{dia} \Phi^{dia}}_{diatoms} \\ &+ \underbrace{(1 - f_{inorg}^{cil}) f_{orgD}^{orgD}(ex^{cil} \Phi^{cil})}_{microzoplankton} \\ &- \underbrace{K_{min}^{DONnr} \Phi^{DONnr}}_{ammonia} \end{aligned}$$

3.3.6 Refractory Dissolved Organic Nitrogen

$$\frac{\partial \Phi^{DONre}}{\partial t} = \underbrace{(1 - f_{orgP})K_{dec}^{PON}\Phi^{PON}}_{PON} - \underbrace{K_{\min}^{DONre}\Phi^{DONre}}_{ammonia}$$

Symbol	Description	Unit	it Formulation		
$oldsymbol{eta}^X_{_{NH_4}}$	X ammonia preference factor	adim	$\beta_{NH4}^{X} = \left(\frac{\Phi^{NH4}}{K_{N}^{X} + \Phi^{NH4}}\right) \left(\frac{\Phi_{NO3}}{K_{N}^{X} + \Phi^{NO4}}\right)$	$\frac{\Phi^{NH4}}{\Phi_{NO3} + \Phi^{NH4}} \left(\frac{\Phi^{NH4}}{K_N^X + \Phi^{NO3}} \right) X = phy, dia$	
K_{dec}^{PON}	PON decomposition Rate	d-1	$K_{dec}^{PON} = K_{dec}^{PON}(T_{ref}).\theta_{dec}^{(T-T_{ref})}$		
K_{\min}^{DONre}	DONre mineralization Rate	d -1	$K_{dec}^{DONre} = K_{\min}^{DONre}(T_{ref}) \cdot (\theta_{\min}^{DONre})^{(T)}$	$\frac{-T_{rof}}{K_r^{phy} + \sum \Phi^x} X = phy, dia$	
$K_{\min}^{\scriptscriptstyle DONnr}$	DONnr mineralization Rate	d ⁻¹	$K_{\min}^{DONnr} = K_{\min}^{DONnr}(T_{ref}).\theta_{\min}^{DONnr(T-1)}$	$T_{ref} = \frac{\sum \Phi^x}{K_r^{phy} + \sum \Phi^x} X = phy, dia$	
K _{nit}	Nitrification Rate	d-1	$K_{nit} = K_{nit}^{ref} (T_{ref}) \theta_{nit}^{(T-T_{ref})} \overline{K_{ref}}$	$\frac{\Phi^{oxy}}{\prod_{iit}^{sat} + \Phi^{oxy}}$	
K _{dnit}	Denitrification Rate	d -1	$K_{dnit} = K_{dnit}^{ref}(T_{ref})\theta_{dnit}^{(T-T_{ref})} \frac{K}{K_{dnit}^{sat}}$	$\frac{dmit}{dm} + \Phi^{axy}$	
	N		1 Phytoplankton Group 1 Zooplankton Group	$\delta_{N}^{zoo} = (1 - E^{X}) \frac{\mu^{zoo}}{E^{X}} \alpha_{N:C}^{X} Y = phy, dia$	
$\delta_{\scriptscriptstyle N}^{\scriptscriptstyle Y}$	Y	d-1	>1 Phytoplankton Group >1 Zooplankton Group	$\begin{split} \delta_{N}^{zoo} &= \sum \left[(1 - g_{zoo}^{X}) G_{zoo}^{X} \alpha_{N:C}^{X} \right] Y = phy, dia, cil \\ \delta_{N}^{cil} &= \sum \left[(1 - g_{cil}^{X}) G_{cil}^{X} \alpha_{N:C}^{X} \right] Y = phy, bact \end{split}$	
			1 Phytoplankton Group 1 Zooplankton Group	$\varphi_N^{zoo} = \mu^{zoo}(\alpha_{N:C}^{phy} - \alpha_{N:C}^{zoo})$	
$arphi_N^Y$	Stoichiometric food web losses	d-1	>1 Phytoplankton Group >1 Zooplankton Group	$\varphi_N^{zoo} = \sum (\alpha_{N:C}^X - \alpha_{N:C}^{zoo}) g_{zoo}^X G_{zoo}^X X \equiv phy, dia, cil$	
				$\varphi_{N}^{cil} = \sum (\alpha_{N:C}^{X} - \alpha_{N:C}^{cil}) g_{cil}^{X} G_{cil}^{X} X \equiv phy, bact$	
Т	Water Temperature			٥C	
T _{ref}	Reference Temperature			20 ºC	
K_N^{Λ}	Nitrogen half-saturation const	ant	mg N I ⁻¹		
	Assimilation efficiency of X by	zooplanki	adim		
g_Y	Assimilation Coefficient of X t	у Ү		adım	
G_Y^{*}	Y grazing on X			[d-1]	
$\alpha_{_{N:C}}^{_{_{A}}}$	Nitrogen/Carbon Ratio			mg N/mgC	
μ^{x}	Growth rate			[d ⁻¹]	
ex^{x}	Excretion Rate			[d-1]	
r^{Λ}	Respiration Rate			[d-1]	
m p ²⁰⁰	Zaanlankton nyadatawa maytalita	ata, pradatic	n hu high ar traphic laugh	[u] [4-1]	
P $K^{PON}(T)$	DON decomposition acts at auforem	ate. predatio	ni by nigher tropine levels	[u]	
A dec (1 ref)	PON decomposition temperature	oofficient	uit	u	
V_{dec} $K^{DONre}(T_{abc})$	PON decomposition temperature of	oemcient	- 4	adiiii 2.1	
R_{\min} (T_{ref}) θ^{DONre}	DONre mineralization rate at refer	ence temper	rature	u ·	
K phy	Nutrient Regeneration Half-Satura	tion Constan	at	maC/1	
$K_r^{DONnr}(T)$	DONan min condition from Deter et enfo			1.1	
A_{\min}^{DONr}	DONna mineralization temperatu	ra cooffician	+	u ¹	
$K^{ref}(T_{-})$	Nitrification rate at reference temp	erature	L	adim	
θ_{nit} (ref)	Nitrification temperature coefficient	nt		adim	
K_{vit}^{sat}	Nitrification half-saturation consta	nt		mg O ₂ /l	
$K_{dnit}(T_{ref})$	Denitrification Rate at reference te	mperature		d-1	
θ_{dnit}	Denitrification temperature coeffic	tient		adim	
f_{inorg}^{X}	Fraction of inorganic material excreted by X			adim	
f_{orgD}^X	Dissolved organic fraction excreted	l by X		adim	
J orgP	r raction of PON available for mine	eralization		aum	

Table 17.Nitrogen Formulations.

Symbol	Description	Unit	Value	Keyword
$K_{\scriptscriptstyle dec}^{\scriptscriptstyle PON}(T_{\scriptscriptstyle ref})$	PON decomposition Rate at reference temperature	d-1	0.1	NOPREF
$\theta_{\scriptscriptstyle dec}$	PON decomposition temperature coefficient	adim	1.02	NOPCOEF
$K_{\min}^{DONre}(T_{ref})$	DONre mineralization Rate at reference temperature	d-1	0.01	NMINR
$ heta_{ ext{min}}^{ ext{DONre}}$	DONre minreralization temperature coefficient	adim	1.02	TMINR
K_r^{phy}	Nutrient Regeneration Half-Saturation Constant	mgC/ l	1	FREGSATC
$K_{nit}(T_{ref})$	Nitrification Rate at reference temperature	d-1	0.06	NITRIREF
$K_{_{nit}}^{_{sat}}$	Nitrification half-saturation constant	mg O ₂ /l	2.0	NITSATCO
$K_{\scriptscriptstyle dnit}^{\scriptscriptstyle sat}$	Denitrification half-saturation constant	mg O _{2/1}	0.1	DENSATCO
θ_{nit}	Nitrification temperature coefficient	adim	1.08	TNITCOEF
$K_{dnit}(T_{ref})$	Denitrification Rate at reference temperature	d-1	0.125	DENITREF
θ_{dnit}	Denitrification temperature coefficient	adim	1.045	TDENCOEF
$K_{\min}^{\text{DONnr}}(T_{ref})$	DONnr mineralization Rate at reference temperature	d-1	0.1	NMINENR
$ heta_{\min}^{DONr}$	DONre minreralization temperature coefficient	adim	1.02	TMINNR
f_{orgP}	Fraction of PON available for mineralization	adim	0.7	PHDECOMP

Table 18. Nitrogen Parameters.

3.4 Phosphorus Biogeochemical Cycle

Figure 8. Phosphorus Biogeochemical Cycle.

3.4.1 Inorganic Phosphorus

$$\frac{\partial \Phi^{IP}}{\partial t} = \underbrace{\left[\int_{inorg}^{phy} (ex^{phy} + r^{phy}) \alpha_{P:C}^{phy} - \mu^{phy} \alpha_{P:C}^{phy} \right] \Phi^{phy}}_{flagellates} \\ + \underbrace{\left[\int_{inorg}^{dia} (ex^{dia} + r^{dia}) \alpha_{P:C}^{dia} - \mu^{dia} \alpha_{P:C}^{dia} \right] \Phi^{dia}}_{diatoms} \\ + \underbrace{\left[(\int_{inorg}^{zoo} ex^{cil} + r^{cil}) \alpha_{P:C}^{cil} \right] \Phi^{cil}}_{microzooplankton} \\ + \underbrace{\left[(\int_{inorg}^{zoo} ex^{zoo} + r^{zoo}) \alpha_{P:C}^{zoo} \right] \Phi^{zoo}}_{mesozooplankton} \\ + \underbrace{K_{\min}^{DOPre} \Phi^{DOPre}}_{DOPre} + \underbrace{K_{\min}^{DOPnr} \Phi^{DOPnr}}_{DOPnr} + \underbrace{\int_{orgP} K_{dec}^{POP} \Phi^{POP}}_{POP} \end{aligned}$$

3.4.2 Particulate Organic Phosphorus

$$\begin{split} \frac{\partial \Phi^{POP}}{\partial t} = & \underbrace{\left[(1 - f_{inorg}^{phy})(1 - f_{orgD}^{phy})(ex^{phy} + r^{phy}) + m^{phy} \right] \alpha_{P:C}^{phy} \Phi^{phy}}_{flagellates} \\ & + \underbrace{\left[(1 - f_{inorg}^{dia})(1 - f_{orgD}^{dia})(ex^{dia} + r^{dia}) + m^{dia} \right] \alpha_{P:C}^{dia} \Phi^{dia}}_{diatoms} \\ & + \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{orgD}^{zoo})ex^{cil} + m^{cil} \right] \alpha_{P:C}^{cil} \Phi^{cil} + (\delta_P^{cil} + \varphi_P^{cil}) \Phi^{cil}}_{microzooplankton} \\ & + \underbrace{\left[(1 - f_{inorg}^{zoo})(1 - f_{orgD}^{zoo})ex^{zoo} + m^{zoo} + p^{zoo} \right] \alpha_{P:C}^{zoo} \Phi^{zoo} + (\delta_P^{zoo} + \varphi_P^{zoo}) \Phi^{zoo}}_{mesozooplankton} \\ & - \underbrace{\left(1 - f_{orgP}^{zoo} \right) K_{dec}^{POP} \Phi^{POP}}_{DONre} \\ & - \underbrace{f_{orgP} K_{dec}^{POP} \Phi^{POP}}_{lp} \end{split}$$

3.4.3 Non Refractory Dissolved Organic Phosphorus

$$\frac{\partial \Phi^{DOPnr}}{\partial t} = \underbrace{(1 - f_{inorg}^{phy}) f_{orgD}^{phy}(ex^{phy} + r^{phy}) \alpha_{P:C}^{phy} \Phi^{phy}}_{flagellates} + \underbrace{(1 - f_{inorg}^{dia}) f_{orgD}^{dia}(ex^{dia} + r^{dia}) \alpha_{P:C}^{dia} \Phi^{dia}}_{diatoms} + \underbrace{(1 - f_{inorg}^{zoo}) f_{orgD}^{zoo} ex^{cil} \alpha_{P:C}^{cil} \Phi^{cil}}_{microzooplankton} + \underbrace{(1 - f_{inorg}^{zoo}) f_{orgD}^{zoo} ex^{zoo} \alpha_{P:C}^{zoo} \Phi^{zoo}}_{mesozooplankton} - \underbrace{K_{\min}^{DOPnr} \Phi^{DOPnr}}_{IP}$$

3.4.4 Refractory Dissolved Organic Phosphorus

$$\frac{\partial \Phi^{DOPre}}{\partial t} = \underbrace{(1 - f_{orgP})K_{dec}^{POP}\Phi^{POP}}_{POP} - \underbrace{K_{\min}^{DOPre}\Phi^{DOPre}}_{IP}$$

MOHID	User	Meeting	/	Course
-------	------	---------	---	--------

Symbol	Description Unit			Formulation		
K_{dec}^{POP}	POP decomposition Rate	d-1	$K_{dec}^{POP} = K_{dec}^{POP} ($	$(T_{ref}).\theta_{dec}^{(T-T_{ref})}$		
K_{\min}^{DOPre}	DONre mineralization Rate	d-1	$K_{dec}^{DOPre} = K_{\min}^{DOPre} ($	$T_{ref} \left(\theta_{\min}^{DOPre} \right)^{(T-T_{ref})} \frac{\sum \Phi^{x}}{K_{r}^{phy} + \sum \Phi^{x}} X = phy, dia$		
$K_{_{ m min}}^{\scriptscriptstyle DOPnr}$	DONre mineralization Rate	d -1	$K_{\min}^{DOPnr} = K_{\min}^{DOPnr}$	$(T_{ref}) \cdot \theta_{\min}^{DOPnr(T-T_{ref})} \frac{\sum \Phi^x}{K_r^{phy} + \sum \Phi^x} X \equiv phy, dia$		
δ^{γ}_{-}	Non-assimilated material by Y	d-1	1 Phytoplankton Group 1 Zooplankton Group	$\delta_{P}^{zoo} = (1 - E^{X}) \frac{\mu^{zoo}}{E^{X}} \alpha_{P,C}^{X} Y = phy, dia$		
0 p	Tool assimilated material by T	u	>1 Phytoplankton Group >1 Zooplankton Group	$\delta_{p}^{zoo} = \sum [(1 - g_{zoo}^{\chi})G_{zoo}^{\chi}\alpha_{P,C}^{\chi}] Y = phy, dia, cil$		
V			1 Phytoplankton Group 1 Zooplankton Group	$arphi_{P}^{zoo}=\mu^{zoo}(lpha_{PC}^{phy}-lpha_{PC}^{zoo})$		
$\varphi_P^{\scriptscriptstyle Y}$	Stoichiometric food web losses	d-1	>1 Phytoplankton Group >1 Zooplankton Group	$\varphi_p^{zoo} = \sum (\alpha_{P,C}^X - \alpha_{P,C}^{zoo}) g_{zoo}^X G_{zoo}^X X \equiv phy, dia, cil$		
T T	Water Temperature	1	°C			
I _{ref} K ^X	Reference Temperature		20 ºC			
F_N^X	Assimilation officiency of Y by coorderates			adim		
a^X	Assimilation Coefficient of X by V			1		
S_Y G_y^X	Y grazing on X			1		
$\alpha_{p,c}^{X}$	Phosphorus/Carbon Ratio			V/mgC		
p^{zoo}	Zooplankton predatory mortality rate: preda	-				
μ^{x}	Growth rate		[d ⁻¹]			
ex^{X}	Excretion Rate		[d-1]			
r^{X}	Respiration Rate		[d-1]			
M $K^{POP}(T_{-1})$	POP decomposition rate at reference temper	ratura	[u]			
A A	POP decomposition temperature coefficient	ature	adim			
$K_{\min}^{DOPre}(T_{ref})$	DOPre mineralization rate at reference temp	perature	d-1			
$ heta_{ ext{min}}^{ ext{DOPre}}$	DOPre mineralization temperature coefficient					
K_r^{phy}	Nutrient Regeneration Half-Saturation Constant			1		
$K_{\min}^{DOPnr}(T_{ref})$	DOPnr mineralization Rate at reference temperature					
$ heta_{\min}^{DOPr}$	DOPnr minreralization temperature coefficient					
f_{inorg}^X	Fraction of inorganic material excreted by X					
$f_{\it orgD}^{X}$	Dissolved organic fraction excreted by X		adim			
$f_{\it orgP}$	Fraction of PON available for mineralization					

Table 19. Phosphorus.

Symbol	Description	Unit	Value	Keyword
$K_{dec}^{POP}(T_{ref})$	POP decomposition Rate at reference temperature	d-1	0.2	PPARTMIN
$\theta_{_{dec}}$	POP decomposition temperature coefficient	adim	1.08	TPPARTMINCOEF
$K_{\min}^{DOPre}(T_{ref})$	DOPre mineralization Rate at reference temperature	d-1	0.03	PMINR
$ heta_{ ext{min}}^{ ext{DOPre}}$	DPre DOPre minreralization temperature coefficient		1.064	PMINRCOEF
$K_{\min}^{DOPnr}(T_{ref})$	$K_{\min}^{DOPur}(T_{ref})$ DOPnr mineralization Rate at reference temperature		0.1	PMINNR
$ heta_{\min}^{DOPr}$	DOPre minreralization temperature coefficient	adim	1.064	PMINNRCOEF

Table 20. Phosphorus Parameters.

3.5 Silica Cycle

Figure 9. Silica BioGeoChemical Cycle.

3.5.1 Dissolved Silica

$$\frac{\partial \Phi^{DissSi}}{\partial t} = \underbrace{-\mu^{dia} \alpha^{dia}_{Si:C} \Phi^{dia}}_{diatoms} + \underbrace{f_{orgP} K^{BioSi}_{dec} \Phi^{BioSi}}_{BioSi}$$

3.5.2 Biogenic Silica

$$\frac{\partial \Phi^{BloSl}}{\partial t} = \underbrace{\left[(1 - f_{inorg}^{dla})(1 - f_{orgD}^{dla})(ex^{dla} + r^{dla}) + m^{dla} \right] \alpha_{Si:C}^{dla} \Phi^{dla}}_{diatoms} + \underbrace{G_{zoo}^{dla} \Phi^{zoo}}_{mesozooplankton} - \underbrace{f_{orgP} K_{dec}^{BloSl} \Phi^{BloSl}}_{Dives}$$

Symbol	Description	Unit	Formulation		
$K_{\scriptscriptstyle dec}^{\scriptscriptstyle BioSi}$	Bio Si decomposition Rate	d-1	$K_{dec}^{BioSi} = K_{dec}^{BioSi}(T_{ref}).\theta_{dec}^{BioSi(T-T_{ref})}$		
Т	Water temperature		°C		
T_{ref}	Reference Temperature		°C		
$\mu^{{}^{dia}}$	Diatoms growth rate		[d-1]		
ex^{dia}	Diatoms Excretion Rate		[d -1]		
r ^{dia}	Diatoms Respiration Rate		[d -1]		
<i>m</i> ^{dia}	Diatoms Natural Mortality Rate		[d-1]		
$G_{\scriptscriptstyle zoo}^{ dia}$	Mesozooplankton grazing on Diatoms		[d-1]		
$\alpha^{\scriptscriptstyle dia}_{\scriptscriptstyle Si:C}$	Diatoms Silica/Carbon Ratio		mg Si/mg C		
$f_{\it orgP}$	Fraction of PON available for mineralization		adim		
$f_{\it orgD}^{\it dia}$	Dissolved organic fraction in diatoms excretio	ns	adim		
$f_{\it inorg}^{\it dia}$	Fraction of inorganic material in diatoms excretions		adim		
$K^{BioSi}_{dec}(T_{ref})$	BioSi decomposition rate at reference tempera	ture	d-1		
$ heta^{BioSi}_{dec}$	BioSi decomposition temperature coefficient		adim		

Table 21. Silica.

Table 22. Silica Parameters.

Symbol	Description	Unit	Value	Keyword	
$K_{dec}^{BioSi}(T^{ref})$	Biogenic Sílica dissolution Rate in the Water	d ⁻¹	0.03	SIKDISS	
$ heta^{BioSi}_{dec}$	Biogenic Silica dissolution temperature coefficient	adim	1.02	SIDISSTCOEF	

3.6 Oxygen Cycle

Figure 10. Oxygen Processes.

Symbol	Description	Unit	Formulation
$\alpha_{O:N}^{\min}$	Oxygen Consumption in Nitrogen Mineralization	mg O/mg N.d ⁻¹	$\alpha_{O:N}^{\min} = \frac{1}{\alpha_{N:C}^{OM}} \times \alpha_{O:C}^{CO2} \times \frac{\Phi^{oxy}}{0.5 + \Phi^{oxy}}$
$\alpha_{O:P}^{\min}$	Oxygen Consumption in Phosphorus Mineralization	mg O/mg P.d ⁻	$\alpha_{O:P}^{\min} = \frac{1}{\alpha_{P:C}^{OM}} \times \alpha_{O:C}^{CO2} \times \frac{\Phi^{oxy}}{0.5 + \Phi^{oxy}}$
K_{nit}^{oxy}	Oxygen Consumption Rate in Nitrification	d-1	$K_{nit}^{oxy} = K_{nit} \cdot \alpha_{O:N}^{NO_3}$
K_{dnit}^{oxy}	Oxygen Consumption Rate in Denitrification	d-1	$K_{dnit}^{oxy} = K_{dnit} . \alpha_{O:N}^{NO_3}$
μ^{X}	Growth rate	[d ⁻¹]	
r^{X}	Respiration Rate	$[d^{-1}]$	
$oldsymbol{eta}_{_{N\!H_4}}^{_X}$	Ammonia preference factor	adim	
K _{dnit}	Denitrification Rate	$[d^{-1}]$	
K _{nit}	Nitrification Rate	[d ⁻¹]	
$lpha_{_{O:C}}^{_{CO2}}$	Oxygen/Carbon Ratio in CO2	mgO/mgC	
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle OM}$	Nitrogen/Carbon ratio in Organic Matter	mgN/mgC	
$lpha_{\scriptscriptstyle P:C}^{\scriptscriptstyle OM}$	Phosphorus/Carbon ratio in Organic Matter	mgP/mgC	
$lpha_{\scriptscriptstyle O:N}^{\scriptscriptstyle NO3}$	Oxygen/Nitrogen Ratio in Nitrate	mgO2/mgN	
$lpha_{\scriptscriptstyle O:P}^{\scriptscriptstyle IP}$	Oxygen/Nitrogen Ratio in Phosphate	mgO2/mgP	
$lpha^{photo}_{O:C}$	Photosynthesis Oxygen:Carbon ratio	mgO2/mgC	
$\alpha^{X}_{O:C}$	Oxygen/Carbon Ratio in respiration	mgO/mgC	

Table 23. Oxygen.

Table 24. Oxygen Parameters.

Symbol	Description	Unit	Value	Keyword
$lpha^{CO2}_{O:C}$	Oxygen/Carbon Ratio in CO2	mgO/mgC	32/12	OCRATIO
$\alpha^{photo}_{O:C}$	Photosynthesis Oxygen/Carbon ratio	mgO/mgC	32/12	PHOTOSOC
$\alpha_{O:N}^{NO3}$	Oxygen/Nitrogen Ratio in Nitrate	mgO/mgN	48/14	NITONRAT
$\alpha^{IP}_{O:P}$	Oxygen/Nitrogen Ratio in Phosphate	mgO/mgP	64/31	PHOSOPRAT
$lpha_{O:C}^{plankton}$	Oxygen/Carbon Ratio in plankton respiration	mgO/mgC	32/12	PLANK_OC_RAT
$\alpha^{zoo}_{O:C}$	Oxygen:Carbon ratioin mesozooplankton respiration	mgO2/mgC	32/12	ZOCRATIO
$lpha_{_{O:C}}^{_{cil}}$	Oxygen:Carbon ratio in microzooplankton	mgO2/mgC	32/12	CILOCRATIO
$\alpha^{bact}_{O:C}$	Bacteria Oxygen:Carbon Ratio	mgO2/mgC	1.4	BACTRATIOOC
$lpha_{\scriptscriptstyle N:C}^{\scriptscriptstyle OM}$	Organic Matter Nitrogen:Carbon Ratio	mgN/mgC	0.18	OMRATIONC
$\alpha_{P:C}^{OM}$	Organic Matter Phosphorus:Carbon Ratio	mgP/mgC	0.024	OMRATIOPC
$\Phi^{O_2}_{\min}$	Minimum oxygen concentration for growth	mgO2/l	10e-5	MINOXYGEN